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Abstract

A new second-order �nite-di�erence algorithm for the numerical solution of di�usion prob-
lems in strongly heterogeneous and non-isotropic media is constructed. On problems with
rough coe�cients or highly nonuniform grids, the new algorithm is superior to all other
algorithms we have compared it with. For problems with smooth coe�cients on smooth
grids, the method is comparable with other second order methods. The new algorithm is
formulated for logically-rectangular grids and is derived using the support-operators method.

A key idea in deriving the method was to replace the usual inner product of vector
functions by an inner product weighted by the inverse of the material properties tensor
and to use the 
ux operator, de�ned as the material properties tensor times the gradient,
rather than the gradient, as one of the basic �rst-order operators in the support-operators
method. The discrete analog of the 
ux operator must also be the negative adjoint of the
discrete divergence, in an inner product that is a discrete analog of the continuum inner
product. The resulting method is conservative and the discrete analog of variable coe�cient
Laplacian is symmetric and negative de�nite on nonuniform grids. In addition, on any grid,
the discrete divergence is zero on constant vectors, the null space for the gradient are the
constant functions and, when the material properties are piecewise constant, the discrete

ux operator is exact for piece-wise linear functions. We compare the methods on some of
the most di�cult examples to be found in the literature.
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1 Introduction

The main goal of this paper is the description and investigation of a new �nite-di�erence
algorithms for solving the elliptic partial di�erential equation (PDE) or stationary di�usion
equation

�divKgrad u = f ; (x; y) 2 V : (1.1)

The solution, u = u(x; y), is the concentration to be solved for (temperature in heat di�usion
problems, and pressure in 
ow problems). Here V is a two dimensional region, div is the
divergence, grad is the gradient, K = K(x; y) is a symmetric positive-de�nite matrix, and
f = f(x; y) is a given right-hand side or forcing function. The boundary conditions are
general Robin (or mixed):

(Kgrad u; ~n) + �u =  ; (x; y) 2 @V ; (1.2)

where ~n is vector of unit outward normal to the boundary @V , and � and  are functions
given on @V . The algorithm is constructed using a nontrivial generalization of the support-
operators method for solving problems where the material properties tensor (or matrix) K
may be discontinuous and non-diagonal and, moreover, the computational grid may not be
smooth.

The support-operators method constructs discrete analogs of invariant di�erential oper-
ators div and grad, which satisfy discrete analogs of the integral identities responsible for
the conservative properties of the continuum model. The method was initially developed in
[14] by Samarskii, Tishkin, Favorskii, and Shashkov and is fully described in [17] .

This paper is the third of a series on the support operators method. In the �rst paper
[16], the support operators method was combined with the mapping method to produce an
algorithm for equations with general boundary conditions. The resulting method was shown
to be accurate when both K is smooth and the problem is solved on a smooth grid. In the
second paper [15], the support-operators method was extended to de�ne new cell-centered
�nite-di�erence algorithm for solving time-dependent di�usion equations with discontinuous
diagonal K on logically rectangular non-smooth grids, such as the grids associated with
Lagrangian hydrodynamics calculations. This paper also contains an extensive review of the
literature on constructing approximations of di�erential operators on non-uniform grids and
motivation for using the support operators method.

In this paper we extend the support-operators method to non-diagonal non-smooth tensor
K and non-smooth logically-rectangular grids. A key to improving the accuracy for non-
smoothK is to use the 
ux operator Kgrad, rather than the gradient operator grad, as one
of the basic �rst-order operators. This requires the usual inner product of vector functions
be replaced by an inner product weighted by the inverse of the material properties tensor.
The method is linear, conservative and material discontinuities are assumed to occur at
the surfaces of the grid cells. The method uses both the heat 
ux and the temperature as
primary variables.

The discrete analog of the variable-coe�cient Laplacian divKgrad can be decom-
posed as a composition of two discrete operators: a divergence DIV; and a 
ux operator
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�KGRAD, which are the adjoints of each other. This ensures the self-adjointness and neg-
ative de�niteness of the discrete variable-coe�cient Laplacian for general grids. Moreover,
on any grid, the discrete analog of div is exactly equal to zero only on constant vectors,
the grad is equal to zero only for constant functions and (when the material properties are
piece-wise constant) the discrete 
ux operator is exact for piecewise linear functions. On
rectangular grids, all discrete the operators reduce to standard �nite di�erence approxima-
tions and when the discontinuous heat conductivity is a scalar, the algorithm produces the
appropriate harmonic average heat conductivity for the 
uxes.

Because the 
uxes are the primary unknowns for the method, when this approach is
used to solve (1.1), the new method has twice as many unknowns as the more traditional
algorithms. However, because the method is second-order accurate on general logically
rectangular grids, fewer grid points are needed than the commonly used �rst order methods
to give the same level of accuracy in the solution. In our computational comparisons with
many of the existing methods, when the computational mesh is signi�cantly skewed, we
�nd that the new method is much more accurate than the traditional �nite di�erence and
�nite volume methods. Also, because the discrete di�erence equations are symmetric and
positive de�nite, only half the coe�cients for the di�erence equations need be stored and the
equations can be solved with some of the most powerful iterative methods for solving linear
systems.

This paper is arranged as follows. In Section 2, the continuum problem is written in
operator form to illuminate the properties of the operators that should have analogs in the
discrete case. The main point in this section is to introduce an inner-product on vectors that
is weighted by K�1 and to introduce the operator Kgrad rather than just grad. In Section
3, the grid and the discretizations of scalar and vector functions are given. Both nodal and
surface discretizations for 
uxes are introduced, and the discrete inner product for general
non-diagonal K is constructed.

In Section 4, following the support-operators method, approximations for div andKgrad

are derived using both the nodal and surface discretizations. Using these operators, the
�nite di�erence scheme for divKgrad is constructed. The theoretical properties of the
discrete operators are summarized (see Appendix A also), and it is shown that, for the
surface discretization, the null-space of grad are the constant functions, while for the nodal
discretization, the null-space also contains the spurious highest-frequency mode on a square
grid.

In Section 4.6, we describe strategies for solving the linear equations given by the dis-
cretizations of the variable-coe�cient Laplacian. An important point here is that the discrete
operator for the surface discretization is not local. However, it is the product of a local dis-
crete operator with the an inverse of a local operator, so the residual can still be computed
as a local operation. Iterative methods that only require local operations, such as the pre-
conditioned conjugate gradient method, can be used e�ciently .

In Section 5, we test and compare our algorithms on eight of the most di�cult examples
to be found in the literature. These examples verify that the surface discretization approach
performs reliably on all of the examples, and the nodal discretization gives reasonable results.
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The �rst example con�rms that the surface discretization method is exact when the so-
lution is piecewise linear. The second example demonstrates the second-order convergence
rate for discontinuous diagonal K. The third example demonstrates the second-order con-
vergence rate for both the surface and nodal discretizations for continuous non-diagonal K.
The fourth example demonstrates the second-order convergence for the surface discretization
and �rst-order convergence for the nodal discretization for non-diagonal and discontinuous
K.

The next three examples are related to porous-media 
ows. The �fth example compares
the discretizations on a highly-discontinuous (checkerboard)K. The surface discretization is
signi�cantly more accurate and less noisy than the nodal discretization. The sixth example
simulates the random placement of blocks of shale in sand, and shows that the surface
discretization produces far more accurate results than the nodal discretization. The seventh
example involves an curved low-permeability streak in a porous media. A non-uniform grid
is adapted to the streak and K is non-diagonal. The simulation con�rms that the 
ow �eld
conforms to the low-permeability region.

The eighth example combines all of the di�cult features of the previous problems. We
verify that for a non-diagonal and piecewise constant K, the surface discretization is exact
on a non-uniform grid. We also verify that the nodal discretization is second-order accurate.

In Appendix A,we prove the surface discretization Kgrad is exact for piecewise linear
functions when K is piecewise constant.

2 The Properties of the Continuum Problem

In this section, we will develop the 
ux form of the elliptic PDE (1.1) as a system of �rst-
order equations and analyze the system in terms of abstract operators on inner-product
spaces of scalar and vector-valued functions. The analysis will be for Robin (mixed) boundary
conditions (1.2). The case with Dirichlet boundary conditions is a straight forward extension
of this analysis and will not be analyzed here.

We introduce the space of scalar functions H with the inner product

(u; v)H =
Z
V
u v dV +

I
@V
u v dS ; u; v 2 H ; (2.1)

and rewrite Equations (1.1,1.2) as
Au = F : (2.2)

The operator A is given by

A : H ! H ; Au =
�
�divKgrad u ; (x; y) 2 V
(Kgrad u; ~n) + �u ; (x; y) 2 @V

(2.3)

and has the following properties:

(Au; v)H = (u; Av)H ; (Au; u)H > 0 ; (2.4)
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The right-hand side of (2.2)has the form

F =
�
f ; (x; y) 2 V
 ; (x; y) 2 @V

: (2.5)

We investigate the properties of problem (1.1,1.2) by writing it in terms of �rst-order
operators in 
ux or mixed form:

div ~w = f ; (x; y) 2 V ;

~w = �Kgradu ; (x; y) 2 V ; (2.6)

�(~w; ~n) + � u =  ; (x; y) 2 @V :

The 
ux ~w = Gu = �Kgradu has physical meaning and is continuous across discontinu-
ities in K, but gradu has neither. When the matrix K is non-diagonal and discontinuous,
there are advantages (and it is natural) to analyzing the equations by considering the oper-
ator G = �Kgrad directly, rather than the operator grad and matrix K separately.

To investigate (2.6), we introduce the space of vector functions H with the inner product

of two vector functions ~A; ~B 2 H, de�ned by

( ~A; ~B)H =
Z
V
(K�1 ~A; ~B) dV : (2.7)

Because the matrixK is symmetric and positive de�nite, so is K�1 and (2.7) satis�es all the
axioms of an inner product. This \weighted" inner product is well de�ned for discontinuous
K and naturally arises in mixed �nite-element formulations (see, for example, [5, 22]).

From (2.6), it is clear that operator A can be represented in the form

A = 
 +D �G ; (2.8)

where the operators G, D, and 
 have the following de�nitions

Gu = �Kgradu ; (x; y) 2 V ; (2.9)

D~w =
�
+div ~w ; (x; y) 2 V ;
�(~w; ~n) ; (x; y) 2 @V ;

(2.10)


u =
�
0 ; (x; y) 2 V ;
� u ; (x; y) 2 @V :

(2.11)

Here
G : H ! H ; D : H! H ; 
 : H ! H : (2.12)

Using the �rst-order operators, System (2.6) can be rewritten in the form


u+D ~w = F ; ~w =Gu : (2.13)

A crucial relation which we must retain in our discrete approximation is

D =G� : (2.14)
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This is clear from the de�nition of operator D, the de�nition (2.1) for the inner product in
the space H, and integral identity

Z
V
�div ~w dV +

Z
V
(~w;grad�) dV =

I
S
� (~w; ~n) dS ; (2.15)

which give:

(D ~w; u)H =
Z
V
udiv ~w dV �

I
@V
u (~w; ~n) dS

= �
Z
V
(~w; gradu) dV

= �
Z
V
(~w; K�1 (Kgradu) dV (2.16)

= (~w; Gu)H :

Also, it is evident that 
 = 
� � 0.
Because A = 
 +G�D, the properties (2.4) follow from the properties of operators 
,

D and G. Note that boundary conditions are included in de�nitions of operators and spaces
of functions in natural way. The properties of �rst-order operators discussed in this Section
are preserved by the �nite-di�erence methods derived using the support-operators method.

3 The Spaces of Discrete Functions

In this section, we de�ne our notation for a logically rectangular grid [9], a cell-centered
discretization of scalar functions, and both nodal and face-centered discretizations of vector-
valued functions.

3.1 The Discretization of Scalar and Vector Functions

The nodes of a logically-rectangular grid can be indexed the same way as a rectangular
grid with indices (i; j), 1 � i � M , 1 � j � N (see Figure (3.1)). The quadrangle de�ned
by the nodes (i; j), (i + 1; j), (i+ 1; j + 1), and (i; j + 1) is called the (i; j) cell (see Figure
3.2). The area of this cell is denoted by V C(i;j). The length of the side of the (i; j) cell
that connects the vertices (i; j) and (i; j + 1) is denoted S�(i;j), while the length of the side
that connects the vertices (i; j) and (i + 1; j) is denoted S�(i;j). The angle between any

two adjacent sides of cell (i; j) that meet at node (k; l) is denoted '(i;j)
k;l (the angle '(i;j)

(i+1;j)

is displayed in Figure 3.2). We assume, unless otherwise stated, that the cells are convex.
(Meshes with non-convex cells are considered in Section 3.2.2 and [15].)

To study convergence rates, we impose some standard mild smoothness assumptions on
the family of grids. A small parameter which characterize the density of the grid is

h = max
�

1

M � 1
;

1

N � 1

�
: (3.1)
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(M,N)

(1,N)

U

(i,N)

U(0,j)
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(i,j)
(M,j)

(1,1)
(i,1)

(M,1)

(i,1)

U
(M,j)U(i,j)

(1,j)

U(i,N)

Figure 3.1: A Logically Rectangular Grid and the Discretization of a Scalar
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η

ϕ
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(i,j+1)
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(i,j)

Figure 3.2: A Typical Cell of a Logically Rectangular Grid
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z
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(i,j,k+1)

(i,j+1,k+1)

(i+1,j,k+1)

(i+1,j+1,k)

(i+1,j+1,k+1)

Figure 3.3: The 3-D Mesh

ξ

ζ

η

(i,j,k)

(i+1,j,k)

(i,j+1,k)

(i,j,k+1) 

(i,j,k)

(i+1,j,k)

(i,j,k+1) 

(i,j+1,k)

Figure 3.4: Curvilinear Coordinates and Grid Lines

We assume that there exits constants C(1)
max and C

(1)
min, which do not depend on h, such that

C1
min h

2 � V C(i;j) � C1
max h

2 ; (3.2)

and that exists constants C(2)
max and C

(2)
min, which do not depend on h, such that

C2
min h � S�(i;j); S�(i;j) � C2

max h; (3.3)

and that there exits a constant � > 0, which does not depend on h, such that

sin
�
'
(i;j)
(k;l)

�
� � : (3.4)

Our notation is motivated by considering the 2-D grid as a projection of a 3-D grid.
This approach may seem awkward at �rst, but it becomes natural when put into a three
dimensional setting and clari�es how the �nite-di�erence methods generalize to 3-D. Because
in 2-D the functions depend only on the two coordinates x and y, we �rst introduce a grid
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WX

WY

(i,j) 

(i,j+1)

(i+1,j)

(i+1,j+1)

(i,j) 

(i,j) 

Figure 3.5: The Nodal Discretization of a Vector

in z in the third dimension. The z grid is chosen to construct a right prism of height one for
each mesh point of grid in the plane for which the cell in the plane is the base (see Figure
3.3). It is also useful to interpret the grid as the discretization of a map from a curvilinear
coordinate system x = x(�; �; �), y = y(�; �; �), z = z(�; �; �), where the nodes of the grid
are given by x(i;j;k) = x(�i; �j; �k), with �i = i��, and so forth, as shown in Figure 3.4.
Thus increasing i corresponds to increasing � and so on. Using this 3-D interpretation, the
notation S�(i;j) refers the area of the 3-D surface given by the points (i; j; k), (i; j + 1; k),
(i; j; k+1), (i; j +1; k+1), that is, S�, gives the element of surface area for a surface where
� is constant, because we took the height of the prism equal to one. Similar results hold for
other sides of a 2-D cell.

3.1.1 The Discrete Scalar Functions

The discrete analog of the scalar function u is the cell-centered discrete scalar function U(i;j)

(see Figure 3.1), whose indices vary in the same range as the volume V C(i;j). The treatment
of the boundary conditions requires the introduction of the values of the scalar function on
the centers of the boundary segments (see Figure 3.1):

U(0;j) ; U(M;j) ; j = 1; : : : ; N � 1 ; U(i;0) ; U(i;N) ; i = 1; : : : ;M � 1 : (3.5)

In the 3-D interpretation, scalar functions are de�ned in the centers of the 3-D prisms and
in the centers of the boundary surfaces. Again, because we only consider the 2-D case, these
values can be projected to the 2-D cells, and the centers of the boundary sides.

The components of K are discretized in the same way as u. The scalar functions � and
 from the boundary conditions, are discretized in the same way as u is on the boundary.

3.1.2 The Discrete Vector Functions

Two possibilities are used for discretizing vector functions ~W = (WX;WY ): the �rst
uses the usual Cartesian componentsWX(i;j) and WY(i;j) of the vector at the nodes as shown
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ηSW

(i,j) 
(i+1,j)

(i+1,j+1)

(i,j) 

(i,j) 

(i,j+1)

(i,j+1)

(i+1,j)

Figure 3.6: The Surface Discretization of a Vector

in Figure 3.5; and the second uses the orthogonal projections of the vector on the direction
which is perpendicular to the surfaces of 3-D cells at the centers of the cells. Because the
3-D cell is a right prism, we can interpret these components as the orthogonal projections on
the directions which are perpendicular to the sides of the cell, as in Figure 3.6. The notation

WS�(i;j) : i = 1; : : : ;M ; j = 1; : : : ; N � 1 (3.6)

is used for the component at the center of side S�(i;j), and the notation

WS�(i;j) : i = 1; : : : ;M � 1 ; j = 1; : : : ; N (3.7)

is used for the component at the center of side S�(i;j). Note that the two components of a
vector are de�ned at the same point.

3.2 The Spaces of Discrete Functions

The spaces of discrete scalar and vector functions need inner products. For scalar functions
this is straight forward, but for vector functions, there are two spaces: HN for the nodal
discretization; andHS for the surface discretization. Neither inner-product is simple because
of the use of K in the inner product and, in both cases, the values of K are not given at the
same points as the vector components.

3.2.1 The Space of Discrete Scalar Functions

The space of discrete scalar functions is labeled HC and has the inner product

(U; V )HC =
M�1X
i=1

N�1X
j=1

U(i;j) V(i;j) V C(i;j)

+
M�1X
i=1

U(i;0) V(i;0) S�(i;1) +
N�1X
j=1

U(N;j) V(N;j) S�(N;j) (3.8)
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+
M�1X
i=1

U(i;M) V(i;M) S�(i;M) +
N�1X
j=1

U(0;j) V(0;j)S�(1;j) :

3.2.2 The Space of Discrete Nodal Vector Functions

The space of discrete nodal vector functions is calledHN and the inner product on this space
is given by (�; �)HN . Note that K and consequently K�1 are de�ned at cell centers, but the
components the vectors are de�ned at the cell nodes, which complicates the de�nition of an
inner product. At �rst, we assume that the components of the vectors ~A and ~B are de�ned
at the cell centers, and then a natural inner product in the space vector functions is

( ~A; ~B) =
M�1X
i=1

N�1X
j=1

(K�1 ~A; ~B)(i;j) V C(i;j) ; (3.9)

where (K�1 ~A; ~B) is the inner product of vectors K�1 ~A and ~B, and the inner product of

two vectors ~A and ~B is
( ~A; ~B) = AX BX +AY BY : (3.10)

For this type of discretization it is natural to assume that tensor K is given by its
Cartesian components:

Kxx ; Kxy = Kyx ; Kyy ; (3.11)

and

K ~A =

 
KxxAX +Kxy AY
Kxy AX +Kyy AY

!
: (3.12)

and consequently

(K�1 ~A; ~B) = (K�1)xxAX BX + (K�1)xy (AX BY +AY BX) + (K�1)yy AY BY : (3.13)

For simplicity, introduce the notation KI = K�1 for the matrix inverse of K.
Because the vectors are de�ned at nodes, and not at the cell centers, to de�ne the inner

product for the space of nodal vector functions HN , we must interpolate the vectors. We
de�ne

( ~A; ~B)HN =
M�1X
i=1

N�1X
j=1

(KI ~A; ~B)(i;j) V C(i;j) (3.14)

where the inner product in a cell is given by

(KI ~A; ~B)(i;j) =
1X

k;l=0

V
(i;j)
(i+k;j+l) (3.15)

n
(KIxx)(i;j) AX(i+k;j+l)BX(i+k;j+l)+

(KIxy)(i;j)

h
AX(i+k;j+l)BY(i+k;j+l) + AY(i+k;j+l)BX(i+k;j+l)

i
+

(KIyy)(i;j) AY(i+k;j+l)BY(i+k;j+l)
o
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and the V
(i;j)
(i+k;j+l) are weights satisfying

1X
k;l=0

V
(i;j)
(i+k;j+l) = 1 : (3.16)

In this formula, each index (k; l) corresponds to one of the vertices of the (i; j) cell, and
the notation for the weights is the same as for the angles of the cell. As was shown in [15],
to obtain a �rst-order approximation for gradient operator, it is necessary that the weights
V

(i;j)
(i+k;j+l) are one half of the area of the triangle in (i; j) cell, which contains angle at the

node (i+ k; j + l), divided by the volume of the cell V C(i;j).
Because the weights are positive if the cell is convex, we are guaranteed that the discrete

analog of variable-coe�cient Laplacian is positive-de�nite (see [15] for details). When the
cell is not convex, we modify the de�nition,

~V (i;j)
(i+k;j+l) =

���V (i;j)
(i+k;j+l)

���P1
p;q=0

���V (i;j)
(i+p;j+q)

��� ; (3.17)

to give positive weights (see [15]). For convex cells, the two de�nitions coincide.

3.2.3 The Space of Discrete Surface Vector Functions

The space of discrete surface vector functions is called HS and the inner product on this
space is (�; �)HS . Again, there is the problem that the components of the vectors are not
de�ned at the cell centers where K is de�ned. We use the same approach and notation as
before for the basic weighted inner product (3.9).

When the vectors are de�ned at cell centers and K = I, then the formula for the inner
product (3.9) in terms of the components of the vectors perpendicular to the cell sides
must be de�ned (see Figure 3.7). Suppose that the � and � axes form a non-orthogonal
basis system and that ' is the angle between these axes. If the unit normals to the axes
are ~nS� and ~nS�, then the components of the vector ~W in this basis are the orthogonal
projections WS� and WS� of ~W onto the normal vectors. (See the discussion in Chapter 2
of Knupp and Steinberg [9] for more details.) A simple vector algebra calculation shows that

if ~A = (AS�;AS�) and ~B = (BS�;BS�), then the expression for the inner product is

( ~A; ~B) =
AS� BS� +AS� BS� + (AS� BS� +AS�BS�) cos(')

sin2(')
: (3.18)

We now consider the case of a non-diagonal matrix K with the Cartesian components

K =

 
Kxx Kxy

Kxy Kyy

!
: (3.19)

Denote by '1 and '2, the angles between the x-axis of Cartesian coordinate system and the
�rst and second axes of local coordinate system, respectively (see Figure 3.8). In terms of

14
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Figure 3.7: The Components of a Vector in a Local Basis
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Figure 3.8: The Angles '1 and '2
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the coordinates of vectors in the local basis system, the inner product (KI ~A; ~B) is

(KI�1 ~A; ~B) =
T11AS� BS� + T22AS� BS� + T12 (AS� BS� +AS� BS�)

sin2(')
; (3.20)

where

T11 = KIxx cos
2 '1 + 2KIxy cos'1 sin'1 +KIyy sin

2 '1 ;

T12 = KIxx cos'1 cos'2

+ 2KIxy (cos'1 sin'2 + sin'1 cos'2) +KIyy sin'1 sin'2 ;

T22 = KIxx cos
2 '2 + 2KIxy cos'2 sin'2 +KIyy sin

2 '2 :

This formula is used to obtain the discrete inner product in the cell:

(KI ~A; ~B)(i;j) =
1X

k;l=0

V
(i;j)
(i+k;j+l)

sin2('(i;j)
(i+k;j+l))

(3.21)

h
T11(i;j)(i+k;j+l)AS�(i+k;j)BS�(i+k;j) + T22(i;j)(i+k;j+l)AS�(i;j+l)BS�(i;j+l)+

(�1)k+l T12(i;j)(i+k;j+l)

�
AS�(i+k;j)BS�(i;j+l) +AS�(i;j+l)BS�(i+k;j)

�i
;

where, for example,

T11
(i;j)
(i+k;j+l) = (KIxx)(i;j) cos

2
�
('1)

(i;j)
(i+k;j+l)

�
+ 2 (KIxy)(i;j) cos

�
('1)

(i;j)
(i+k;j+l)

�
sin

�
('1)

(i;j)
(i+k;j+l)

�
+ (KIyy)(i;j) sin

2
�
('1)

(i;j)
(i+k;j+l)

�
:

That is, the values of matrix elements are de�ned in the cell (i; j), and the angle '1 is related
to the corresponding vertex of the cell. The formulas for T12 and T22 are similar. In general,
the notation is the same as for any quantity related to cell and vertex. Finally, as in (3.14),
the inner product in HS is given by

( ~A; ~B)HS =
M�1X
i=1

N�1X
j=1

(KI ~A; ~B)(i;j) V C(i;j) : (3.22)

3.2.4 The Formal and Natural Inner Products

To compute the adjoint relationships, it is helpful to introduce a formal inner products, [�; �],
in the spaces of scalar and vector functions. In HC

[U; V ]HC =
M�1X
i=1

N�1X
j=1

U(i;j) V(i;j) (3.23)

+
M�1X
i=1

U(i;0) V(i;0) +
N�1X
j=1

U(M;j) V(M;j) +
M�1X
i=1

U(i;N) V(i;N) +
N�1X
j=1

U(0;j) V(0;j) ;

16



in HN

[ ~A; ~B]HN =
MX
i=1

NX
j=1

AX(i;j)BX(i;j) +
MX
i=1

NX
j=1

AY(i;j)BY(i;j) ; (3.24)

and in HS

[ ~A; ~B]HS =
MX
i=1

N�1X
j=1

AS�(i;j)BS�(i;j) +
M�1X
i=1

NX
j=1

AS�(i;j)BS�(i;j) : (3.25)

Then the relationships between the natural inner products and the formal inner products
are:

(U; V )HC = [MU; V ]HC ; ( ~A; ~B)HN = [N ~A; ~B]HS ; ( ~A; ~B)HS = [S ~A; ~B]HS ;
(3.26)

where M, N , and S are matrices.
Formulas for these matrices can be found by direct comparison of the formal and natural

inner products. The formula for M is

(MU)(i;j) = V C(i;j) U(i;j) ; i = 1; � � � ;M � 1 ; j = 1; � � � ; N � 1:

(MU)(i;j) = S�(i;j) U(i;j) ; i = 0 and i =M ; j = 1; � � � ; N � 1: (3.27)

(MU)(i;j) = S�(i;j) U(i;j) ; i = 1; � � � ;M � 1 ; j = 0 and j = N :

From these formulas, we see that the matrixM is a symmetric positive-de�nite operator in
the formal inner product:

[MU; V ]HC = [U;MV ]HC ; [MU; U ]HC > 0 : (3.28)

The operator N can be written in block form:

N ~A =

 
N11 N12

N21 N22

!  
AX
AY

!
=

 
N11AX +N12AY
N21AX +N22AY

!
: (3.29)

A comparison of the formal inner product ( ~A; ~B)HN given in (3.14) and the natural inner
product gives

[N ~A; ~B]HN =
MX
i=1

NX
j=1

f[(N11AX)(i;j) + (N12AY )(i;j)]BX(i;j) + (3.30)

[(N21AX)(i;j) + (N22AY )(i;j)]BY(i;j)g :

Note that all components of operator N are diagonal operators,

(N11AX)(i;j) = n11(i;j)AX(i;j) ; (N12AY )(i;j) = n12(i;j)AY(i;j) ;

(N21AX)(i;j) = n21(i;j)AX(i;j) ; (N22AY )(i;j) = n22(i;j)AX(i;j) ; (3.31)

17
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(i,j)

Figure 3.9: The Stencils for the Operators S12 and S21

and the diagonal elements are given by

n11(i;j) = (KIxx)(i;j) V
(i;j)
(i;j) + (KIxx)(i�1;j) V

(i�1;j)
(i;j)

+ (KIxx)(i�1;j�1) V
(i�1;j�1)
(i;j) + (KIxx)(i;j�1) V

(i;j�1)
(i;j) ;

n12(i;j) = (KIxy)(i;j) V
(i;j)
(i;j) + (KIxy)(i�1;j) V

(i�1;j)
(i;j)

+ (KIxy)(i�1;j�1) V
(i�1;j�1)
(i;j) + (KIxy)(i;j�1) V

(i;j�1)
(i;j) ; (3.32)

n21(i;j) = (KIxy)(i;j) V
(i;j)
(i;j) + (KIxy)(i�1;j) V

(i�1;j)
(i;j)

+ (KIxy)(i�1;j�1) V
(i�1;j�1)
(i;j) + (KIxy)(i;j�1) V

(i;j�1)
(i;j) ;

n22(i;j) = (KIyy)(i;j) V
(i;j)
(i;j) + (KIyy)(i�1;j) V

(i�1;j)
(i;j)

+ (KIyy)(i�1;j�1) V
(i�1;j�1)
(i;j) + (KIyy)(i;j�1) V

(i;j�1)
(i;j) :

This operator is symmetric and positive-de�nite in the formal inner product:

[N ~A; ~B]HN = [ ~A; N ~B]HN ; [N ~A; ~A]HN > 0 : (3.33)

The operator S can be written in block form:

S ~A =

 
S11 S12
S21 S22

!  
AS�
AS�

!
=

 
S11AS� + S12AS�
S21AS� + S22AS�

!
: (3.34)

The operators S11 and S22 are diagonal and the stencils for the operators S12 and S21 are
shown on Figure 3.9. A comparison of natural inner product ( ~A; ~B)HS and the formal inner
product

[S ~A; ~B]HS =
MX
i=1

N�1X
j=1

[(S11AS�)(i;j) + (S12AS�)(i;j)]BS�(i;j) (3.35)

+
M�1X
i=1

NX
j=1

[(S21AS�)(i;j) + (S22AS�)(i;j)]BS�(i;j) ;

18



gives

(S11AS�)(i;j) =

0
@ 1X
k;l=0

V
(i�k;j)
(i;j+l) T11

(i�k;j)
(i;j+l)

sin2('(i�k;j)
(i;j+l) )

1
A AS�(i;j) ;

(S12AS�)(i;j) =
1X

k;l=0

(�1)k+l
V

(i�k;j)
(i;j+l) T12

(i�k;j)
(i;j+l)

sin2('(i�k;j)
(i;j+l) )

AS�(i�k;j+l) ; (3.36)

(S21AS�)(i;j) =
1X

k;l=0

(�1)k+l
V

(i;j�k)
(i+l;j) T12

(i;j�k)
(i+l;j)

sin2('
(i;j�k)
(i+l;j) )

AS�(i+l;j�k) ;

(S22AS�)(i;j) =

0
@ 1X
k;l=0

V
(i;j�k)
(i+l;j) T22

(i;j�k)
(i+l;j)

sin2('(i;j�k)
(i+l;j) )

1
A AS�(i;j) :

We remark that these formulas are valid only for i = 2; � � � ;M � 2; j = 2; � � � ; N � 2, but
it is easy to show that if �ctitious nodes are introduced for i = 0, i = M + 1, j = 0, and
j = N + 1, whose coordinates are the same as for the corresponding real nodes, then the
formulas are valid for all i and j. If all the weights V p;q

(i;j) are positive, then the operator S is
symmetric and positive-de�nite in the formal inner product:

[S ~A; ~B]HS = [ ~A; S ~B]HS ; [S ~A; ~A]HS > 0 : (3.37)

4 The Finite-Di�erence Method

We now use the support operators method to derive a discrete the divergence, 
ux operator,
and variable coe�cient Laplacian. We �rst derive a discrete approximation to the divergence,
and then use this discrete divergence to derive the approximations to the 
ux operator and
Laplacian using discrete analogs of the integral identities. Because the principle role of the
divergence operator, we call it the prime operator. Because the discrete approximations for
the 
ux operator and Laplacian are derived from the prime operator, they are called derived
operators.

4.1 The Prime Operator

A natural conservative invariant de�nition of the divergence operator is

div ~w = lim
V!0

1

V

I
V
(~w; ~n) dV : (4.38)

This identity is used in [17] to derive a discrete analog DIV of the divergence div, for both
the nodal and surface discretizations.
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4.1.1 The Nodal Discretization for Vectors

Here the cell discretization of scalar functions and the nodal discretization of vector functions
is used. In the interior of the region, the prime operator D = DIV, which is the discrete
analog of the divergence, is given by

(D ~W )(i;j) =
1

V C(i;j)
f

h�
WX(i;j) �WX(i+1;j+1)

� �
y(i+1;j) � y(i;j+1)

�
�
�
WX(i+1;j) �WX(i;j+1)

� �
y(i;j) � y(i+1;j+1)

�i
� (4.39)h�

WY(i;j) �WY(i+1;j+1)
� �

x(i+1;j) � x(i;j+1)
�

�
�
WY(i+1;j) �WY(i;j+1)

� �
x(i;j) � x(i+1;j+1)

�i
g ;

while on the boundary D gives an approximation of the normal component of vector. For
example on the \bottom boundary" where j = 1 and i = 1; � � � ;M � 1, a unit normal vector
is  

y(i+1;1) � y(i;1)
l�(i;1)

;�
x(i+1;1)� x(i;1)

l�(i;1)

!
; (4.40)

where, because the problem is two dimensional, l� = S� and l� = S� are the lengths of the
edges of the cell, and then D is given by

(D ~W )(i;0) = �

 
WX(i;1) +WX(i+1;1)

2

y(i+1;1) � y(i;1)
l�(i;1)

(4.41)

�
WY(i;1)+WY(i+1;1)

2

x(i+1;1) � x(i;1)
l�(i;1)

!
:

4.1.2 The Surface Discretization for Vectors

For a cell discretization for scalar functions and a surface discretization for vector functions,
the prime operator (discrete divergence = D = DIV ) is de�ned in the interior of the region
by

(D ~W )(i;j) =
1

V C(i;j)
f (4.42)

�
WS�(i+1;j)S�(i+1;j) �WS�(i;j) S�(i;j)

�
+�

WS�(i;j+1)S�(i;j+1) �WS�(i;j) S�(i;j)
�
g ;

while on the boundary D gives an approximation of the normal component of a vector:

(D ~W )(i;0) = �WS�(i;1) ; i = 1; � � � ;M � 1 ;

(D ~W )(i;N) = +WS�(i;N) ; i = 1; � � � ;M � 1 ; (4.43)

(D ~W )(0;j) = �WS�(1;j) ; j = 1; � � � ; N � 1 ;

(D ~W )(M;j) = +WS�(M;j) ; j = 1; � � � ; N � 1 :
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4.2 The Derived Operator

The derived operator G is the discrete analog of the 
ux operator, and is de�ned by G = D�.
Here the adjoint is taken in the natural inner product. For the surface discretization on
arbitrary grids, it is not possible to write a explicit formula for the components of the
operator G. However, it is possible to express G in terms of M, S, and D. For the nodal
discretization, G can be expressed explicitly in terms of M, N , and D.

4.2.1 The Surface Discretization for Vectors

For the cell discretization of scalar functions and the surface discretization for vectors, G is
computed by �nding the adjoint of D : HS ! HC:

(D ~W;U)HC = ( ~W;D�U)HS ; (4.44)

which can be rewritten in terms of the formal inner products as

[D ~W;MU ]HC = [ ~W;S D�U ]HS : (4.45)

The formal adjoint Dy of D is de�ned to be the adjoint in the formal inner product, so

[ ~W;DyMU ]HS = [ ~W;S D�U ]HS : (4.46)

This relationship must be true for all ~W and U , so

DyM = S D� ; (4.47)

which gives
G = D� = S�1DyM : (4.48)

Because S is banded, S�1 is likely to be full (unless S is diagonal). Hence, G is full and
has a non-local stencil. This is not a serious problem, because we do not need to explicitly
form G. The discrete 
uxes are

~W = G U = S�1DyMU ; (4.49)

and if the operator S is applied to both sides of this equation, then

S ~W = DyMU : (4.50)

The operators on both sides of this equation have a local stencils.
These equations are similar to the �nite element and compact �nite di�erence methods

that can be expressed in the form (4.50) with local stencils. (see, for example, [10, 1, 11]).
To �nd the 
uxes for given temperature, from (4.50) we must solve a system of linear

equations. The discrete operator S is symmetric positive-de�nite and with �ve non-zero
elements in each row (see (3.36) and Figure 3.9). In Section 4.6, we discuss possible solution
approaches.
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The relationship (D ~W; U)HC = ( ~W; D� U)HS implies that

[ ~W; DyMU ]HS = [D ~W;MU ]HS : (4.51)

The right-hand side of this formula can be evaluated using (4.42) for D and summation by
parts to give:

�
�
DyMU

�
(i;j)

=

 
S�(i;j) (U(i;j) � U(i�1;j))
S�(i;j) (U(i;j) � U(i;j�1))

!
: (4.52)

4.2.2 The Nodal Discretization for Vectors

In the case of the cell discretization of scalar functions and the nodal discretization of vectors,
an argument similar to that given in the previous section gives

DyM = N D� ; (4.53)

which gives
G = D� = N�1DyM : (4.54)

Note that the operator D here is not the same as in the previous section. As before, the

uxes are given by

~W = G U = N�1DyMU ; (4.55)

where ~W = (WX;WY ). Applying the operator N to both sides gives

N ~W = DyMU : (4.56)

To simplify the notation, introduce ~F :

N ~W = ~F = DyMU : (4.57)

where ~F = (FX;FY ). As before, the operator N is given by a two by two block of operators,
but in this case, the blocks are diagonal, so N can be inverted explicitly by solving the left-
hand equation in (4.57). The explicit form of this equations is

n11(i;j)WX(i;j) + n12(i;j)WY(i;j) = FX(i;j) ; (4.58)

n12(i;j)WX(i;j) + n22(i;j)WY(i;j) = FY(i;j) ;

and the solution is

WX(i;j) =
FX(i;j) n22(i;j) � FY(i;j) n12(i;j)

n11(i;j) n22(i;j) � n122(i;j)
; (4.59)

WY(i;j) = �
FX(i;j) n12(i;j) � FY(i;j) n11(i;j)

n11(i;j) n22(i;j) � n122(i;j)
:
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The relationship (D ~W; U)HC = ( ~W; D� U)HN implies that

[ ~W; DyMU ]HN = [D ~W;MU ]HC : (4.60)

The right-hand side of the last formula can be evaluated using Formula (4.39) for D and

summation by parts to give an explicit formula for ~F = DyMU

�FX(i;j) = 0:5
n�
y(i;j+1) � y(i+1;j)

�
U(i;j) +

�
y(i�1;j) � y(i;j+1)

�
U(i�1;j)

+
�
y(i;j�1) � y(i�1;j)

�
U(i�1;j�1) +

�
y(i+1;j) � y(i;j�1)

�
U(i;j�1)

o
:

The formula for FY is given by changing y to �x in the previous.

4.3 The Discrete Operator Equations

For both discretizations, the discrete analog of the continuum operator 
 (2.11)), is de�ned
by

(
U)(i;j) =

(
0 ; in the interior ;

�(i;j) U(i;j) ; on the boundary.
(4.61)

The �nite di�erence method approximating the �rst-order system (2.6), written as an analog
of the continuum-operator system (2.13), is


U +D ~W = F ; ~W = G U : (4.62)

Then the discretization of the second-order equation (1.1), which is an analog of the operator
equation (2.8), is

A U = (
 +DG) U = F : (4.63)

For both discretizations, in the interior of the cells, Equation (4.63) is�
D ~W

�
(i;j)

= DIV ~W(i;j) = f(i;j) : (4.64)

The approximation of the boundary conditions is�
D ~W

�
(i;j)

+ �(i;j) U(i;j) =  (i;j) ; (4.65)

where, on the boundary, the operator D is an approximation of the normal component of
the vector.

Also, for both discretizations, the 
uxes are determined from

~W = G u : (4.66)

For the cell-node discretization, the operator G can be constructed from (4.59) and (4.61)
and there are local explicit formulas for the 
uxes. (see Figure 4.10). For the cell-surface
discretization the operator G is non-local (see Section 4.2.1) and, consequently, there is no
local explicit equation for the 
uxes.
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(i,j−1) (i+1,j−1)

(i−1,j) (i,j) (i+1,j)

(i−1,j+1) (i,j+1) (i+1,j+1)

(i−1,j−1)

Figure 4.10: The nine-cell stencil for the cell-node discretization for the operator A

4.4 The Discrete Operators on a Rectangular Grid

On orthogonal grids and for diagonal K, the interior discretizations discussed in this paper
reduce to well-known discretizations. In this section we consider the case where K = k I
on a rectangular grid with the cell sides S�(i;j) = hY and S�(i;j) = hX and cell volume
V C(i;j) = hX hY

4.4.1 The Cell-Node Discretization

For the cell-node discretization, the DIV operator (4.39) is

(DIV ~W )(i;j) =
0:5 (WX(i+1;j) +WX(i+1;j+1))� 0:5 (WX(i;j) +WX(i;j+1))

hX
(4.67)

+
0:5 (WY(i+1;j+1) +WY(i;j+1))� 0:5 (WY(i+1;j) +WY(i;j))

hY
;

which is a natural discretization for a rectangular grid.
The operator G from (4.56) is more complicated. First, the operator N is given by (3.29)

through (3.32). On a rectangular grid the formula for n11 becomes

n11(i;j) = 0:25hX hY
1X

k;l=0

1

k(i�k;j�l)
: (4.68)

This can be written in terms of the two-dimensional cell-to-node harmonic average

~k(i;j) =

0
@1
4

1X
k;l=0

1

k(i�k;j�l)

1
A
�1

: (4.69)
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c)

Figure 4.11: The Stencil of the Laplacian for: a) Cell-Node Discretization: Rectangular Grid
b) Cell-Node Discretization: Square Grid c) Cell-Surface Discretization: Rectangular Grid

Next, (4.61) is

�FX(i;j) = 0:5hY
n
U(i;j) � U(i�1;j) � U(i�1;j�1) + U(i;j�1)

o
(4.70)

= hY
n
0:5

�
U(i;j) + U(i;j�1)

�
� 0:5

�
U(i�1;j) + U(i�1;j�1)

�o
;

which gives

WX(i;j) = ~k(i;j)

8<
:
0:5

�
U(i;j) + U(i;j�1)

�
� 0:5

�
U(i�1;j) + U(i�1;j�1)

�
hX

9=
; ;

WY(i;j) = ~k(i;j)

8<
:
0:5

�
U(i;j) + U(i�1;j)

�
� 0:5

�
U(i;j�1) + U(i�1;j�1)

�
hY

9=
; : (4.71)

The expressions in curly braces is an approximation for the derivatives @u=@x and @u=@y.
The stencil for the discrete analog of the Laplacian div grad is given by choosing K = I:

1
4hX2 +

1
4hY 2

�1
2hX2 +

1
2hY 2

1
4hX2 +

1
4hY 2

1
2hX2 +

�1
2hY 2

�1
hX2 +

�1
hY 2

1
2hX2 +

�1
2hY 2

1
4hX2 +

1
4hY 2

�1
2hX2 +

1
2hY 2

1
4hX2 +

1
4hY 2

(4.72)

When the grid is square, the stencil becomes the �ve-point stencil shown in Figure 4.11. On
a square grid, the cell-node Laplacian has a nontrivial null space that includes the checker
board mode.

4.4.2 The Cell-Surface Discretization

For the surface discretization of vectors, Formula (4.42) gives the operator DIV as

(DIV ~W )(i;j) =
WS�(i+1;j) �WS�(i;j)

hX
+
WS�(i;j+1) �WS�(i;j)

hY
; (4.73)
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which is also a natural discretization for rectangular grid.
The operator G is computed from Formula (4.50), and involves the operator S given by

(3.36). For orthogonal grids S is diagonal (the sines of all angles are one and the cosines of

all angles are zero). Also, all V
(p;q)
(i;j) are equal to 0:25hX hY . Using (4.52), Equation (4.50)

for internal cells becomes0
@0:5hX hY

X
k=0;1

1

k(i�k;j)

1
AWS�(i;j) = hY (U(i;j) � U(i�1;j)) (4.74)

or

WS�(i;j) =
2k(i�1;j) k(i;j)
k(i�1;j) + k(i;j)

U(i;j) � U(i�1;j)

hX
: (4.75)

Thus, on rectangular grids, the cell-surface discretization leads to the well-known harmonic
average for the coe�cient k in the � direction. The formula for WS� is similar:

WS�(i;j) =
2k(i;j�1) k(i;j)
k(i;j�1) + k(i;j)

U(i;j) � U(i;j�1)

hY
; (4.76)

and contains the harmonic average for k in � direction.
The 
uxes on the boundary are one-sided di�erences. For example, on the left boundary

WS�(1;j) = k(1;j)
U(1;j) � U(0;j)

0:5hX
; WS�(i;1) = k(i;1)

U(i;1) � U(i;0)

0:5hY
: (4.77)

The discrete analog of the Laplacian div grad is

U(i+1;j) � 2U(i;j) + U(i�1;j)

hX2
+
U(i;j+1) � 2U(i;j) + U(i;j�1)

hY 2
(4.78)

which is the usual �ve point approximation on a rectangular grid with the stencil shown in
Figure 4.11.

4.5 Theoretical Properties of the Algorithms

For the cell-surface discretization, the properties for the operators div and grad were inves-
tigated in Shashkov and Steinberg [15], where it was shown that the divergence of a constant
vector is zero, that for smooth grids the point truncation errors for the divergence DIV
and for the gradient GRAD are second order, and for general grids, DIV and GRAD are
�rst-order accurate, and that the DIV is exact for integral truncation error. In the Ap-
pendix A, we show, using a rather lengthy geometric calculation, that for piecewise constant
K, the discrete analog of Kgrad is exact on piecewise linear functions. In the following
subsection, it is shown that, for the cell-surface discretization, the null space of G is exactly
the constants, while for nodal discretization on square grids, the null space of G contains
highly oscillatory checker board grid functions in addition to the constants.

In Section 5, the approximation properties of the variable-coe�cient Laplacian divKgrad

are numerically shown to con�rm these theoretical results.
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4.5.1 The Null Space of the Operator G

For the cell-surface discretization, we prove that GU is zero if and only if U is constant.
Formula (4.48) gives

G U = S�1DyMU ; (4.79)

and then, if U is a constant, (4.52) shows that DyMU = 0, so G U = 0.
Conversely, assume that G U = 0. Formula (4.79) and the fact that operator S is positive

de�nite gives
DyMU = 0 : (4.80)

This and Formula (4.52) then gives:

U(i;j) � U(i�1;j) = 0 ; i = 1; : : : ;M ; j = 1; : : : ; N � 1 ;

U(i;j) � U(i;j�1) = 0 ; i = 1; : : : ;M � 1 ; j = 1; : : : ; N ;

which implies that U is a constant. Therefore the null space of the discrete operator G is
the constant functions, exactly as for the di�erential operator kgrad.

For the cell-node discretization, the situation is quite di�erent: in the case of a square
grid, Formula (4.61) shows that both the constant function U(i;j) = 1 and the \checkerboard"
function U(i;j) = (�1)i+j are satisfy G U = 0, as do any linear combinations of these functions.
The checkerboard solution or mode is well known, especially in computational Lagrangian
gas dynamics, where it leads to the so-called \hour-glassing" instability [13]. In case of
elliptic equations, this mode leads to the presence of high-frequency noise in the solution, as
illustrated by the numerical examples in Section 5.

4.6 Solving the System of Linear Equations

The discrete equations for both the cell-node and the cell-surface discretization have the
form (4.62):


U +D ~W = F ; ~W = G U : (4.81)

The 
uxes can be eliminated from this system to obtain an equation for U :

AU = 
U +D G U = F ; (4.82)

where A is symmetric and positive de�nite.
For the cell-node discretization, the operator A is symmetric and positive de�nite, and

has a local 9 cell stencil. In our numerical examples to compare the accuracy of the methods,
we used a simple SOR iteration to solve this system. More e�cient iteration methods, such
as multigrid [3, 4, 19, 2] or incomplete Cholesky conjugate gradient methods [8], could also
have been used to solve these equations.

For the case of cell-surface discretization, the operators G and A are non-local and, there-
fore, algorithms that require explicit expressions for A are impractical for large problems.
The equations can be formulated so that algorithms, such as preconditioned conjugate gra-
dient methods, requiring only a multiplication of a vector by A can be used. Given U ,
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AU can be computed e�ciently by solving (4.50) S ~W = DyMU , for ~W and evaluating

AU = 
U + D ~W . All operators in this formulation are explicitly known and local. More-
over, because S is a positive de�nite symmetric local operator, the equation for ~W can be
solved e�ciently with iterative methods. On orthogonal grids S is a diagonal operator, and
all steps of this procedure are local.

Other e�cient algorithms to solve this system include the family of two-level gradient
methods, including the minimal residual method, the minimal correction method, and the
minimal error method. All these methods can be written as

B
U (s+1) � U (s)

�s
+AU (s) = F ; (4.83)

where U (s) is approximate solution to Un+1 on iteration number s, �s some iteration pa-
rameter, and operator B is preconditioner. A family of three-level iteration methods, which
require only the computation of AU include the three-level conjugate-direction methods,
like the conjugate gradient method. All these methods can be written as

B U (s+1) = �s+1 (B � �s+1A) U
(s) + (1 � �s+1) B U

(s�1) + �s+1 �s+1 F ;

B U (1) = (B � �1A)U
(0) + �1 F :

The e�ectiveness of these methods strongly depends on the choice of a preconditioner. The
simplest Jacobi type preconditioner approximates S by its diagonal blocks. This is exact for
orthogonal grids and produces a �ve-cell symmetric positive-de�nite operator corresponding
to removing the mixed derivatives from the variable-coe�cient Laplacian on non-orthogonal
grids.

4.6.1 Solving for the Fluxes

Given U , the system (4.50) must be solved to obtain the 
ux. In our examples, we used the
block Gauss-Seidel algorithm:

S11WS�(s+1) + S12WS�(s) = FX ; (4.84)

S21WS�(s+1) + S22WS�(s+1) = FY ; (4.85)

where (s) and (s + 1) are iteration indices. Equation 4.84 gives all WS�(s+1) 
uxes for the
new iteration (s+1), and then from equation 4.85, all 
uxesWS�(s+1) can be found. Because
the matrix of the operators S11 and S22 are diagonal, systems 4.84 and 4.85 can be solved
explicitly. Because the operators for these equations are symmetric and positive de�nite, the
block Gauss-Seidel method always converges.

Another approach to solving (4.50) is to use the fact that the operators S11, and S22 are
diagonal, and then eliminate either WS� or WS� from 4.84. For example, to the equation
resulting from eliminating WS� is�

S11 + S12 S
�1
22 S21

�
WS� = FX � S22FY : (4.86)
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(i,j)

Figure 4.12: The Stencil for WS�

The operator of this system, �
S11 + S12 S

�1
22 S21

�
; (4.87)

is symmetric and positive de�nite, and has the local stencil shown in 4.12.

5 Numerical Examples

The examples in this section, summarized in Table 5.1, solve the elliptic PDE (1.1) and were
chosen to illustrate how the cell-node and cell-surface algorithms perform for discontinuous
nondiagonal K and on nonuniform grids. The �rst example veri�es that the algorithms are
exact for linear solutions on random logically-rectangular grids. Examples 2, 3, and 4 are
used to compare the convergence rates of the algorithms for various kinds of coe�cients and
grids. Examples 5 and 6 show that the algorithms can compute accurate total 
uxes for
very rough K. Example 7 con�rm that the algorithms produce reasonable results for the
case of non-diagonal and discontinuous K and non-uniform grids, while Example 8 verify
that for non-diagonal and discontinuous K and non-uniform grids, but where the solution
is piecewise linear, that the cell-surface algorithm is exact and the cell-node algorithm is
second-order accurate.

The asymptotic truncation error Eh on a grid of M �N nodes,

h = maxf
1

M � 1
;

1

N � 1
g; (5.1)

is estimated by
jjEhjj = C hq +O(hq+1) ; (5.2)

where q is the order of the error, and the constant C, the convergence-rate constant, is
independent of h, and jj � jj is some norm.

29



K K grid
# name diag cont uniform

5.1 yes no no
5.2 MacKinnon yes no no
5.3 Crumption 1 no yes yes
5.4 Crumption 2 no no yes
5.5 Jikov yes no yes
5.6 Durlofsky 1 yes no yes
5.7 Durlofsky 2 no no no
5.8 Das no no no

Table 5.1: Summary of Examples

In the numerical examples the truncation errors were evaluated on a sequence of grids
h ; h=2 ; h=4 ; : : : and the convergence rates estimated from the ratio between the norms of
the errors (5.2) and

jjEh=2jj = C
hq

2q
+O(hq+1) : (5.3)

The order of convergence q can be estimated by

q � log2
jjEhjj

jjEh=2jj
: (5.4)

In the numerical experiments, continuum functions are discretized using the projection
operator

(ph u)i;j = u(xci;j ; y
c
i;j)

where xci;j ; y
c
i;j are the coordinates of geometric center of the cell.

The convergence rates were estimated using both the maximum norm

Emax =k U � phu kmax= max
i;j

jUi;j � (ph u)i;jj

and the mean-square norm

EL2 =k U � phu kL2=

0
@M�1X

i=1

N�1X
j=1

(Ui;j � (ph u)i;j)
2 V Ci;j

1
A

1
2

; (5.5)

where U is the solution of the �nite-di�erence method and u is the exact solution.
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Figure 5.13: Example 5:1 and 5:2: A Random Grid, M = N = 17

5.1 Piecewise Linear Solutions

The �rst test problem has a diagonal di�usion coe�cient, that is, K(x; y) = k(x; y) I, where
I is the identity matrix, and k is piecewise constant:

k =

(
k1 ; 0 < x < 0:5
k2 ; 0:5 < x < 1

: (5.6)

On the top and bottom boundary, the 
ux is equal to zero, while on the left and right
boundaries, the mixed boundary conditions

u� 2 k1
@u

@x
= 0 ; u+ 2k2

@u

@x
= 1 ; (5.7)

are used. The steady-state solution of this problem is

u =

8<
:

k2 x+2k1 k2
0:5 (k1+k2)+4 k1 k2

; 0 < x < 0:5 ;

k1 x+2k1 k2+0:5 (k2�k1)
0:5 (k1+k2)+4 k1 k2

; 0:5 < x < 1 ;
(5.8)

that is, the solution is a piecewise linear function.
This 1-D problem is solved on the 2-D random grid in the unit square shown in Figure

5.13. This mesh was generated by perturbing an initial uniform cell width of w by displacing
each node to a random position on a circle of radius 0:2w centered about the original position
of the node. Because our methods require that any discontinuity line coincide with a grid
line, the line x = 0:5 is kept as a grid line, so only the y coordinates for the nodes are changed.
Note that such grids satisfy the regularity condition for grids formulated in Section 3. This
example veri�es that our cell-surface method is exact for this problem. The isolines of the
approximate solution are shown in Figure 5.14.
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Figure 5.14: Example 5:1: The Isolines for the Approximate Solution, M = N = 17

5.2 Piecewise Quadratic Solutions

The second test problem is from MacKinnon and Carey [12], where the di�usion equation
has a constant right-hand side of one, and the di�usion coe�cient is the same as in the
previous problem. The exact solution is one dimensional:

u(x) =

8<
:

a1
x2

2
+ b1 x ; 0 � x � 1

2
;

a2
x2

2 + b2 x+ c2 ;
1
2 � x � 1 ;

; (5.9)

where

ai =
�1

ki
; b1 = �0:25 (3 a2 + a1)

k2
k1 + k2

; b2 =
k2
k1
b1 ; c2 = �(b2 + 0:5 a2) : (5.10)

For this problem, the 
ux is equal to zero on the top and bottom boundaries and for the
other boundaries, the following are used: on the left boundary

u� 2 k1
@u

@x
= �2 k1 b1 ; (5.11)

and on the right boundary

u+ 2k2
@u

@x
= 0:5 a2 + b2 + c2 + 2k1 (a2 + b2) : (5.12)

As in the previous problem, the 1-D problem is solved on a 2-D random grid on the unit
square that is shown in Figure 5.13. The approximate solution for M = N = 41 is shown
in Figure 5.15. Results of the convergence tests on random grids are presented in Table 5.2,
where the �rst column gives the number of grids points with N =M , the next two columns
give the maximum and mean-square error, and the �nal two columns give the estimated
convergence rate as second-order in both the max and mean-square norms.
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Figure 5.15: Example 5:2: The Piecewise Quadratic Solution

M-1 max L2-norm qmax q2
norm

10 5.98E-2 3.40E-2 1.88 1.99
20 1.62E-2 8.54E-3 1.98 1.96
40 4.10E-3 2.18E-3 - -

Table 5.2: Example 5:2: Convergence Rates for a Random Grid: MacKinnon and Carey
Test Problem
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Figure 5.16: Example 5:3: The Pressure for the Cell-Node Discretization, M = N = 33

Method M max L2-norm qmax q2
norm

Cell-Node 17 3.74E-3 1.06E-3 1.84 2.03
33 9.66E-4 2.58E-4 1.97 2.02
65 2.45E-4 6.36E-5 - -

Cell-Surface 17 5.11E-3 1.68E-3 1.92 2.01
33 1.35E-3 4.15E-4 1.95 2.09
65 3.48E-4 9.73E-5 - -

Table 5.3: Example 5:3: Convergence Rates: Cell-Node and Cell-Surface Discretizations

5.3 Non-Diagonal Continuous K

Problem 1, from Crumpton, Shaw, and Ware [2], has a constant non-diagonal K, de�ned on
the unit square with Dirichlet boundary conditions obtained from the exact solution. The
permeability is

K =

 
2 1
1 2

!
; (5.13)

where K is a positive de�nite matrix. The true solution is u = exy, which corresponds to
this right-hand side

f(x; y) = �2 (1 + x2 + x y + y2) exy : (5.14)

Figure 5.16 displays the approximate solution for M = N = 33 and the cell-node dis-
cretization. Convergence-rate data for the cell-node and cell-surface discretizations are in
given in Table 5.3, which indicates second-order convergence rates for both methods, both
in max and L2 norms.
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Method M max L2-norm qmax q2
norm

Cell-Node 17 1.00E-2 7.98E-3 0.82 1.17
33 5.66E-3 3.53E-3 0.90 1.03
65 3.02E-3 1.72E-3 - -

Cell-Surface 17 9.63E-3 7.05E-3 1.89 2.02
33 2.59E-3 1.73E-3 1.96 2.12
65 6.72E-4 3.96E-4 - -

Table 5.4: Example 5:4: Convergence Rates: Cell-Node and Cell-Surface Discretization

5.4 Non-Diagonal Discontinuous K

This test problem from Crumpton, Shaw, and Ware [2] is de�ned on the square [�1; 1] �
[�1; 1], with Dirichlet boundary conditions. The di�usion coe�cient is given by

K =

8>>>>>><
>>>>>>:

 
1 0
0 1

!
; x < 0 ;

�

 
2 1
1 2

!
; x > 0 ;

(5.15)

where the parameter � is used to vary the strength of the discontinuity at x = 0. The exact
solution is:

u(x; y) =

8<
:

[2 sin(y) + cos(y)] �x+ sin(y) ; x < 0 ;

exp(x) sin(y) ; x > 0 ;
: (5.16)

The right-hand side, which corresponds to this solution, is also discontinuous:

f(x; y) =

8><
>:

[�2 sin(y)� cos(y)] � x� sin(y); x < 0 ;

2� exp(x) cos(y) ; x > 0 ;
: (5.17)

No special discretization is needed for the right-hand side because our method uses a cell-
centered discretization for u and the discrete analog of operator divKgrad whose domain
and range coincide with HC, and the right-hand side is also assumed to be given in the cells
and the material discontinuity coincides with a grid line.

Figure 5.17 displays the isolines for the approximate solution for M = N = 17, and
� = 1. Table 5.4 gives the convergence-rate data for both the cell-node and the cell-surface
discretizations. This data veri�es the second-order convergence rate for cell-surface algorithm
and a �rst-order convergence rate for cell-node algorithm.
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Figure 5.17: Example 5:4: The Isolines for the Pressure, M = N = 17
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Figure 5.18: Example 5:5: Pattern for Homogenization
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Figure 5.19: Example 5:5: The Homogenization Problem

5.5 Diagonal Discontinuous K: Homogenization Example

The next example, given in Jikov, Kozlov and Oleinik [7], is related to theory of homog-
enization of di�erential operators. Assume that a material �lls all of space with the pattern
which is presented in Figure 5.18. In the shaded areas K = k2 I, while in the other areas
K = k1 I. The homogenization problem is to �nd some e�ective matrix ~K that describes the
average di�usion coe�cient of such a media as the cell size shrinks to zero. In [7] p.37, it is
shown that, for such a pattern, the e�ective matrix is:

~K =
q
k1 k2 I ; (5.18)

that is, this media can be described by using a diagonal matrix with a geometrically averaged
di�usion coe�cient.

To reproduce this result numerically, the di�usion equation was solved on the rectangle
[0; 1] � [0; :5] using a diagonal matrix with K = k1 I, k1 = 1 and K = k2 I, k2 = 100, as
in Figure 5.19. The boundary conditions are that there are no 
uxes through the top and
bottom boundaries and Dirichlet conditions on right and left boundary.

According to [7], such a media can be described by an e�ective di�usion coe�cient ~K,
and then the 
ux in x direction through the con�guration, which is presented in Figure 5.19,
equals

FLUXx = �
q
k1 k2

uright � uleft
xright � xleft

= �
q
k1 k2 : (5.19)

In this example, FLUXx = 10.
The calculations were performed on a square grid, where the grid lines coincide with the

discontinuity lines, and the 
ux through the system was computed as follows

(FLUXx)
CS
numerical =

PN�1
j=1 WS�1;j S�1;jPN�1

j=1 S�1;j

= hY

PN�1
j=1 WS�1;j

0:5
; (5.20)
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Figure 5.20: Example 5:5: The Pressure for Cell-Surface Discretization
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Figure 5.21: Example:5:5 The Isolines for the Pressure for the Cell-Surface and Cell-Node
Discretization
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Figure 5.22: Example:5:5 Velocity �eld for Cell-Node and Cell-Surface Discretization

Method M approx. exact error q

ux 
ux

Cell-Node 17 6.8 10 3.2 0.71
33 8.04 10 1.96 1.22
65 9.16 10 0.84 -

Cell-Surface 17 7.24 10 2.76 0.83
33 8.45 10 1.55 1.78
65 9.55 10 0.45 -

Table 5.5: Example:5:5 Convergence Rates for Flux: Cell-Node and Cell-Surface Discretiza-
tion
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Figure 5.23: Example 5:6: Velocity Field for Sand-Shale Problem

(FLUXx)
CN
numerical =

PN�1
j=1 0:5 (WX1;j +WX1;j+1)S�1;jPN�1

j=1 S�1;j

= hY
N�1X
j=1

(WX1;j +WX1;j+1) ;

where hY = 1=(N � 1).
Figure 5.20 displays the pressure for the cell-surface discretization while Figures 5.21 and

5.22 show the isolines of pressure and velocity �elds for both discretizations. Note that the
cell-surface discretization pro�les are much smoother than the cell-node solution.

Table 5.5 contains the convergence-rate data for the total 
ux for both types of discretiza-
tions. This table shows that the convergence rate for cell-node discretization is approximately
�rst-order, and that for the cell-surface discretization the convergence rate is approximately
second-order.

5.6 Flow Through a Sand-Shale System

This example is from Durlofsky [6] and is de�ned on the unit square, with the boundary
conditions: u = 0 along x = 0, u = 1 along x = 1, and the 
ux is equal to zero along y = 0
and y = 1. The permeability �eld is generated by randomly placing shale blocks, of total
area fraction 0:2, throughout the sand on regular grid of dimension 20�20 (see Figure 5.23).
In the example, the permeabilities of both the sand (ksand) and shale (kshale) are taken to be
uniform and isotropic, K = k I, with ksand = 1 and kshale = 10�6. The \exact" 
ux through
the system (which is 
ux obtained on very �ne grid) is 0:5202 (see [6]).

Figure 5.23 shows the velocity �elds for both types of discretization. The streamlines
for the case of the cell-surface discretization, which were obtained from the vector �eld by
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Figure 5.24: Example 5:6: Streamlines for Sand-Shale Problem, M = N = 21 and M = N =
41

Method M approx. exact error q

ux 
ux

Cell-Node 21 0.022 0.5205 0.498 1.39
41 0.33 0.5205 0.190 1.07
81 0.43 0.5205 0.090 -

Cell-Surface 21 0.45 0.5205 0.070 1.22
41 0.49 0.5205 0.030 1.32
81 0.508 0.5205 0.012 -

Table 5.6: Example 5:6: Convergence Rates for Flux: Cell-Node and Cell-Surface Discretiza-
tion
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Figure 5.25: Example 5:6: Pressure Isolines For Sand-Shale Problem

computing the stream function and then drawing its isolines, are shown in Figure 5.24. The
isolines of the pressure are presented in Figure 5.25, which shows the more regular behavior
of the pressure for the case of the cell-surface discretization. The convergence rates for the
total 
ux are presented in Table 5.6. For N = M = 21, the cell-node discretization gives
absolutely unphysical result. This can be explained as follows: the 
uxes are computed at
nodes, and the corresponding elements of the matrixK are also computed at the nodes by a
harmonic average from four neighboring cells, so for 20� 20 cells, all nodes have very small
permeability, which almost blocks the system.

In is interesting to compare the accuracy of the our cell-surface discretization and mixed
�nite-element method, described in Durlofsky [6], as function of number of unknowns. In [6],
the total 
ux, which is obtained using 1240 unknowns, is 0:4508, while our method gives a

ux of 0:451 for M = N = 21 (the correct result is 0:5205). For a uniform grid used in this
example, and for a diagonal K matrix, as used in this example, the 
uxes can be eliminated
from the system and then the resulting system of linear equations contains only the pressure.
That is, the number of unknowns, taking into account the Dirichlet boundary conditions on
the left and right boundaries, is equal to (M � 1) � (N + 1) = 440. If the 
uxes are not
eliminated, then the number of unknowns is equal to (M � 1) � (N + 1) +M � (N � 1) +
(N � 2)� (M � 1) = 1240, exactly as for the mixed �nite-element method. Because of these
di�erences, to compare the two methods, it is not appropriate to compare only the number
of unknowns, but the structure of the matrix and the solution procedure for the system of
linear equations must also be considered.

5.7 Flow Through a System Containing an Impermeable Streak

This example, similar to one in Durlofsky [6], uses the logically rectangular grid on the
unit square shown Figure 5.26. The top curve is chosen to be an arc of a circle with the
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Figure 5.26: Example 5:7: The Geometry and the Grid for the Streak

center at (0:1;�0:4) and radius equal to 1:2. The bottom curve an arc of a circle with the
same center and with radius equal to 1:1.

The permeability throughout the domain is uniform and isotropic (K = I), except in
the low-permeability streak where the permeability is set such that the component parallel
to the local streak orientation (kk) is equal to 0:1 and the component perpendicular to the
streak orientation (k?) is equal to 0:001. In the streak, the tensor K is a full tensor, in
terms of its Cartesian components, which vary with (x; y) and are readily determined from
the knowledge of kk and k?. For the Cartesian components Kxx;Kxy;Kyy, which are used
in cell-node discretization, the transformation formulas are:

Kxx = kk cos
2 '+ k? sin2 ' ; (5.21)

Kxy = (kk � k?) cos' sin' ; (5.22)

Kyy = kk sin
2 '+ k? cos2 ' ; (5.23)

where ' = '(x; y) is the angle of rotation of the orthogonal coordinate system where the
tensor K is diagonal and has components kk and k?. In our case

sin' = �
x0q

(x0)2 + (y0)2)
; (5.24)

cos' =
y0q

(x0)2 + (y0)2)
; (5.25)

where x0 = x� 0:1 and y0 = y + 0:4.
Figure 5.27 displays the velocity �eld for case of the cell-node discretization (the length

of arrows are proportional to module of the vectors). The results of the cell-surface dis-
cretization will be similar. As expected physically, no 
ow enters the streak, so these results
are qualitatively similar to the best results in Durlofsky [6].

5.8 Non-Diagonal, Piecewise Continuous K
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Figure 5.27: Example 5:7: Velocity Field for Cell-Node Discretization
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Figure 5.28: Example 5:8: Grid and Discontinuity Line, M = N = 33
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Figure 5.29: Example 5:8: Pressure, M = N = 33

In this example from Das, Scha�er, Steinberg, and Weber [18], the region is the unit
square and the boundary conditions are the normal 
ux given by the exact solution on the
top and the bottom boundaries, and Dirichlet condition given by the exact solution on the
left and right boundaries. The non-diagonal permeability (or di�usion) matrix has a jump
discontinuity of height � along the line r x + s y = �, where 0 � r ; s ; � � 1 and r + s = 1
(see Figure 5.28). The matrix K is

K = k(x; y)

 
1 1=10

1=10 1

!
; (5.26)

where

k(x; y) =

(
1 ; if 0 � r x+ s y < � ;
� ; if � � r x+ s y < 1 ;

: (5.27)

The exact solution for the case when the right-hand side equals zero is

u(x; y) =

8>><
>>:

� (r x+s y)
1+� (��1) ; if 0 � r x+ s y < � ;

(r x+s y)+� (��1)
1+� (��1) ; if � � r x+ s y < 1 ;

: (5.28)

As expected, the method for the case of cell-surface discretization is exact for the piecewise
linear solution.

Figure 5.29 displays the approximate solution for r = 0:7 and � = 10, for the cell-node
discretization. Table 5.7 veri�es that the convergence rates are second-order.
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M max L2-norm qmax q2
norm

17 5.98E-4 2.15E-4 1.74 1.99
33 1.78E-4 5.38E-5 1.83 1.98
65 4.98E-5 1.36E-5 - -

Table 5.7: Example 5:8: Convergence Rates: Cell-Node Discretization
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A The Truncation Error for the Discrete Analog of

Kgrad

In this appendix, the approximation properties of Kgrad are de�ned in terms of projection
operators for scalar- and vector-valued continuum functions. For the cell-surface discretiza-
tion, scalar valued functions are projected onto their values at cell centers:

(ph(u))(i;j) = u(xc(i;j); y
c
(i;j)) ; (A.1)

where

xc(i;j) =
x(i;j) + x(i+1;j) + x(i+1;j+1) + x(i;j+1)

4
;

yc(i;j) =
y(i;j) + y(i+1;j) + y(i+1;j+1) + y(i;j+1)

4
; (A.2)

and vector-valued functions are projected onto the normal component of the vector in the
middle of the sides of the cells:

Ph =

 
P�h
P�h

!
; (A.3)

where
(P�h(~w))(i;j) = (~w; ~n)j(x�;y�)(i;j) ; (P�h(~w))(i;j) = (~w; ~n)j(x�;y�)(i;j) ; (A.4)

and

x�(i;j) =
x(i;j) + x(i;j+1)

2
; y�(i;j) =

y(i;j) + y(i;j+1)
2

;

x�(i;j) =
x(i;j) + x(i+1;j)

2
; y�(i;j) =

y(i;j) + y(i+1;j)
2

: (A.5)

Then the truncation error for discrete operator G is de�ned to be

 G(u) = G(ph u)� Ph(Kgrad u) : (A.6)

Our goal is to show that for piecewise linear function u and general grids, the discrete
operator G approximating Kgrad, is exact on linear functions. We restrict the proof to
the case of a diagonal matrix K = k(x; y) I with piecewise constant function k(x; y). The
results also hold for non-diagonal and piecewise constant K and the proof of the general
result is similar to the one given. Also, we assume that the discontinuities of the coe�cient
K coincide with curve where u may not be di�erentiable, and that this curve is continuous
and aligned with the cell boundaries.

Because the function u is piecewise linear, the derivatives @u=@x, and @u=@y are piecewise
constants. Because the 
ux is continuous at interfaces, the Cartesian components of 
ux,

GX = k
@u

@x
; GY = k

@u

@y
; (A.7)
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Figure A.30: The Local Basis System

are constant over the entire domain.
The de�nition of the components of the vector ~G = (GS�;GS�) = kgrad u are

GS�(i;j) = GX ns�x(i;j) +GY ns�y(i;j) ; (A.8)

GS�(i;j) = GX ns�x(i;j) +GY ns�y(i;j) ;

where (ns�x; ns�y) are components of the normal to side S�, and (ns�x; ns�y) are components
of the normal to side S�.

For this investigation, it is convenient to introduce the local basis system with its origin
at the node (x(i;j); y(i;j)), axis l directed along the side S�(i;j), and axis n is perpendicular

to this side (see, Figure A.30). The projections of a vector ~G on the axes of this local
orthogonal coordinate system are denoted GN = GS�(i;j) and GL. Therefore, GN is the
component normal to the interface, and GL is the component tangential to the interface.
These components can be written in terms of GX and GY and vice versa:

GN = GX ns�x(i;j) +GY ns�y(i;j) ;

GL = �GX ns�y(i;j) +GY ns�x(i;j) ;

GX = GN ns�x(i;j) �GLns�y(i;j) ; (A.9)

GY = GN ns�y(i;j) +GLns�x(i;j) :

Using (A.8), and (A.9), GS� and the components GS� on all sides of the cells (i; j) and
(i� 1; j) can be express in terms of GN and GL as follows (see Figure A.30):

GS�(i;j) = GN ;

GS�(i;j) = sin'
(i;j)
(i;j)GL � cos'

(i;j)
(i;j)GN ;

GS�(i;j+1) = sin'
(i;j)
(i;j+1)GL + cos'

(i;j)
(i;j+1)GN ; (A.10)

48



GS�(i�1;j+1) = sin'
(i�1;j)
(i;j+1)GL � cos'

(i�1;j)
(i;j+1)GN ;

GS�(i�1;j) = sin'
(i�1;j)
(i;j) GL + cos'

(i�1;j)
(i;j) GN :

The de�nition (A.6) of the truncation error  G and the de�nition (4.48) of the operator
G gives

S  G = S (Ph(Kgradu))�DyM (ph u) : (A.11)

The right-hand side of this equation is estimated by estimating each term.
To estimate the �rst term in (A.11), let ~G = S (Ph(kgradu)) and then

~GS�(i;j) = (A.12)

1

k+(i;j)

2
4
0
@ V

(i;j)
(i;j)

sin2 '
(i;j)
(i;j)

+
V

(i;j)
(i;j+1)

sin2 '
(i;j)
(i;j+1)

1
A GS�(i;j)+

V
(i;j)
(i;j) cos'(i;j)

(i;j)

sin2 '
(i;j)
(i;j)

GS�(i;j) �
V

(i;j)
(i;j+1) cos'

(i;j)
(i;j+1)

sin2 '
(i;j)
(i;j+1)

GS�(i;j+1)

3
5+

1

k�(i;j)

2
4
0
@ V

(i�1;j)
(i;j)

sin2 '(i�1;j)
(i;j)

+
V

(i�1;j)
(i;j+1)

sin2 '(i�1;j)
(i;j+1)

1
A GS�(i;j)�

V
(i�1;j)
(i;j) cos'(i�1;j)

(i;j)

sin2 '
(i�1;j)
(i;j)

GS�(i�1;j) +
V

(i;j)
(i�1;j+1) cos'

(i�1;j)
(i;j+1)

sin2 '
(i�1;j)
(i;j+1)

GS�(i�1;j+1)

3
5 :

Because
V

(i�k;j)
(i;j+l) = 0:25S�(i;j) S�(i�k;j+l) sin'

(i�k;j)
(i;j+l) ; (A.13)

Equation (A.12) can be transformed to

~GS�(i;j) = (A.14)

0:25S�(i;j)

8<
: 1

k+

2
4
0
@ S�(i;j)

sin'(i;j)
(i;j)

+
S�(i;j+1)

sin'(i;j)
(i;j+1)

1
A GS�(i;j)+

S�(i;j) cos'
(i;j)
(i;j)

sin'(i;j)
(i;j)

GS�(i;j) �
S�i;j�1 cos'

(i;j)
(i;j+1)

sin'(i;j)
(i;j+1)

GS�(i;j+1)

3
5+

1

k�

2
4
0
@ S�(i�1;j)

sin'
(i�1;j)
(i;j)

+
S�(i�1;j+1)

sin'
(i�1;j)
(i;j+1)

1
A GS�(i;j)�

S�(i�1;j) cos'
(i�1;j)
(i;j)

sin'(i�1;j)
(i;j)

GS�(i�1;j) +
S�(i�1;j+1) cos'

(i�1;j)
(i;j+1)

sin'(i�1;j)
(i;j+1)

GS�(i�1;j+1)

3
5
9=
;

Using the formulas in (A.10), the previous formula can be written in terms of GL and GN :

~GS�(i;j) = (A.15)
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0:25S�(i;j)

�
1

k+

h
GN

�
S�(i;j) sin'

(i;j)
(i;j) + S�(i;j+1) sin'

(i;j)
(i;j+1)

�
+

GL
�
S�(i;j) cos'

(i;j)
(i;j) � S�(i;j+1) cos'

(i;j)
(i;j+1)

�i
+

1

k�

h
GN

�
S�(i�1;j) sin'

(i�1;j)
(i;j) + S�(i�1;j+1) sin'

(i�1;j)
(i;j+1)

�
+

GL
�
�S�(i�1;j) cos'

(i�1;j)
(i;j) + S�(i�1;j+1) cos'

(i�1;j)
(i;j+1)

�io
:

For the second term in (A.11), consider the � component of DyM (ph (u)) (see (4.52)),
which is

S�(i;j)
h
(ph(u))(i;j) � (ph(u))(i�1;j)

i
: (A.16)

Because the function u is piece-wise linear, the truncation error is computed using one-sided
Taylor series at the point (x�; y�)(i;j), which is the middle of side (i; j)� (i; j+1) (see Figure
A.31). Values on the \right" of this side are labeled with a sub- or superscript \+", while
values on the \left" of this side are labeled with sub- or superscript \-".

Because the local basis system (n; l) is used and the fact that the function u is linear on
each side of the discontinuity,

(ph u)(i;j) = u+ +
@u

@n

�����
+

(nc(i;j) � n�(i;j)) +
@u

@l

�����
+

(lc(i;j) � l�(i;j)) ;

(ph u)(i�1;j) = u� +
@u

@n

�����
�

(nc(i�1;j) � n�(i;j)) +
@u

@l

�����
�

(lc(i�1;j) � l�(i;j)) :

To simplify the notation, subscripts or superscripts for values at the center point (x�; y�)(i;j)
of the edge l are not used. Because GN and GL are constant over the entire domain, and
the function u is continuous, that is, u+ = u� = u at the center point of the edge of l, the
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previous equations become

(ph (u))(i;j) = u+
GN

k+
(nc(i;j) � n�(i;j)) + +

GL

k+
(lc(i;j) � l�(i;j))

= u+
1

k+

h
GN (nc(i;j) � n�(i;j)) + +GL (lc(i;j) � l�(i;j))

i
;

(ph (u))(i�1;j) = u+
GN

k�
(nc(i�1;j) � n�(i;j)) + +

GL

k�
(lc(i�1;j) � l�(i;j))

= u+
1

k�

h
GN (nc(i�1;j) � n�(i;j)) + +GL (lc(i�1;j) � l�(i;j))

i
:

(A.17)

And �nally,

(ph (u))(i;j) � (ph (u))(i�1;j) = (A.18)

1

k+

h
GN (nc(i;j) � n�(i;j)) + +GL (lc(i;j) � l�(i;j))

i
+

1

k�

h
GN (nc(i�1;j) � n�(i;j)) + +GL (lc(i�1;j) � l�(i;j))

i

To compare (A.15) with (A.18), expressions for the coordinates of the vertices of the cells
are needed in the local coordinate system:

n(i;j) = 0 ; l(i;j) = 0 ;

n(i;j+1) = 0 ; l(i;j+1) = S�(i;j) ;

n(i+1;j) = S�(i;j) sin'
(i;j)
(i;j) ; l(i+1;j) = S�(i;j) cos'

(i;j)
(i;j) ;

n(i+1;j+1) = S�(i;j+1) sin'
(i;j)
(i;j+1) ; l(i+1;j+1) = S�(i;j) � S�(i;j+1) cos'

(i;j)
(i;j) ;

n(i�1;j+1) = �S�(i�1;j+1) sin'
(i�1;j)
(i;j+1) ; l(i�1;j+1) = S�(i;j) � S�(i�1;j+1) cos'

(i�1;j)
(i;j+1) ;

n(i�1;j) = �S�(i�1;j) sin'
(i�1;j)
(i;j) ; l(i�1;j) = S�(i�1;j) cos'

(i�1;j)
(i;j) ;

and also
n�(i;j) = 0 ; l�(i;j) = 0:5S�(i;j) : (A.19)

These expression give

nc(i;j) � n�(i;j) =
1

4

�
0 + 0 + S�(i;j) sin'

(i;j)
(i;j) + S�(i;j+1) sin'

(i;j)
(i;j+1)

�
� 0

=
1

4

�
S�(i;j) sin'

(i;j)
(i;j) + S�(i;j+1) sin'

(i;j)
(i;j+1)

�
;

lc(i;j) � l�(i;j) =
1

4

�
0 + S�(i;j) + S�(i;j) cos'

(i;j)
(i;j) + S�(i;j) + S�(i;j+1) cos'

(i;j)
(i;j+1)

�
�
1

2
S�(i;j)

=
1

4

�
S�(i;j) cos'

(i;j)
(i;j) � S�(i;j+1) cos'

(i;j)
(i;j+1)

�
:
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From these formulas it is clear that the coe�cients of 1=k+ in the expressions S Ph(kgradu)
and DyM (ph u) are the same. Similar considerations are valid for nc(i�1;j)�n

�
(i;j) and l

c
(i�1;j)�

l�(i;j). Therefore
S  G = 0 ; (A.20)

and S is invertible, so consequently  G = 0, that is, the operator G is exact for piecewise
linear functions.
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